Lithium Amide Assisted Asymmetric Mannich-Type Reactions of Menthyl Acetate with PMP-Aldimines

ORGANIC LETTERS 2004 Vol. 6, No. 11 ¹⁷²¹-**¹⁷²³**

Seiji Hata, Mayu Iguchi, Tetsuo Iwasawa, Ken-ichi Yamada, and Kiyoshi Tomioka*

*Graduate School of Pharmaceutical Sciences, Kyoto Uni*V*ersity, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan*

tomioka@pharm.kyoto-u.ac.jp

Received February 24, 2004

ABSTRACT

A lithium enolate of menthyl acetate added to PMP-imines, in the presence of an equimolar amount of lithium diisopropylamide, affords the Mannich-type addition products in high stereoselectivity.

There have been few reports^{1,2} on the asymmetric Mannichtype reactions of acetate lithium enolates with stable *N*substituted imines^{3,4} of poor electrophilicity.⁵ In contrast, propionates and other α -substituted acetate analogues have been used in the asymmetric Mannich-type reactions.⁶ Success of the Mannich reaction with a chiral acetate is

(2) For asymmetric Mannich-type reactions using a chiral acetate equivalent with achiral activated imines, see: (a) Liebeskind, L. S.; Welker, M. E.; Fengl, R. W. *J. Am. Chem. Soc.* **¹⁹⁸⁶**, *¹⁰⁸*, 6328-6343. (b) Palomo, C.; Oiarbide, M.; González-Rego, M. C.; Sharma, A. K.; García, J. M.; Gonza´lez, A.; Landa, C.; Linden, A. *Angew. Chem., Int. Ed*. **2000**, *39*, ¹⁰⁶³-1066 and references therein.

(4) Arend, M.; Westermann, B.; Risch, N. *Angew. Chem., Int. Ed*. **1998**, *³⁷*, 1044-1070.

(5) For recent asymmetric Mannich-type reactions using a ketene derivative, see: (a) Müller, R.; Röttele, H.; Henke, H.; Waldmann, H. *Chem. Eur. J.* 2000, 6, 2032–2043. (b) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. *Eur. J.* **²⁰⁰⁰**, *⁶*, 2032-2043. (b) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 2271-2274. (c) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. *J. Am. Chem. Soc.* **2002**, *¹²⁴*, 6626-6635. (d) Wenzel, A. G.; Jacobsen, E. N. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 12964-12965. (e) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 2507-2515.

10.1021/ol049675n CCC: \$27.50 © 2004 American Chemical Society **Published on Web 04/30/2004**

limited to the Yamamoto protocol, which uses 2-methoxyaniline-derived aldimines and Lewis acid additives.7 We have been investigating the chiral-ligand-controlled asymmetric addition reaction⁸ of lithium ester enolates with aldimines derived from aldehydes and 4-methoxyaniline $(PMP-NH₂)$.⁹ Either the ternary complex reagent of α -substituted ester lithium enolates having a chiral bidentate ligand and a lithium amide as components or the binary reagent of a lithium enolate coordinated by a tridentate ligand enhanced the reactivity of an enolate toward PMP-imines, giving the

Springer-Verlag: Heidelberg, 2003; pp 37-59. (9) (a) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. *J. Am. Chem Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 2060-2061. (b) Kambara, T.; Hussein, M. A.; Fujieda, H.; Iida, A.; Tomioka, K. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 9055-9058. (c) Hussein, M. A.; Iida, A.; Tomioka, K. *Tetrahedron* **¹⁹⁹⁹**, *⁵⁵*, 11219- 11228. (d) Kambara, T.; Tomioka, K. *J. Org. Chem.* **¹⁹⁹⁹**, *⁶⁴*, 9282-9285. (e) Tomioka, K.; Fujieda, H.; Hayashi, S.; Hussein, M. A.; Kambara, T.; Nomura, Y.; Kanai, M.; Koga, K. *Chem. Commun.* **¹⁹⁹⁹**, 715-716.

⁽¹⁾ Reviews: (a) Hart, D. J.; Ha, D.-C. *Chem. Re*V. **¹⁹⁸⁹**, *⁸⁹*, 1447- 1465. (b) *Enantioselecti*v*e Synthesis of â-Amino Acids*; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (c) Kobayashi, S. Ishitani, H. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 1069-1094. (d) Denmark, S. E.; Nicaise, O. J.-C. In *Comprehensi*V*e Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, pp 923-961. (e) Benaglia, M.; Cinquini, M.; Cozzi, F. *Eur. J. Org. Chem.* **²⁰⁰⁰**, 563-572.

⁽³⁾ Other than stable *N*-aryl imines, chiral sulfinyl imines have been the good reaction partners. (a) Abele, S.; Seebach, D. *Eur. J. Org. Chem.* **2000**, ¹-15. (b) Tang, T. P.; Ellman, J. A. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 7819-⁷⁸³² and references therein.

⁽⁶⁾ For examples, see: (a) Ojima, I.; Habus, I. *Tetrahedron Lett*. **1990**, *³¹*, 4289-4292. (b) Vicario, J. L.; Badı´a, D.; Carrillo, L. *J. Org. Chem.* **²⁰⁰¹**, *66,* ⁹⁰³⁰-9032.

^{(7) (}a) Saito, S.; Hatanaka, K.; Yamamoto, H. *Org. Lett*. **²⁰⁰⁰**, *²*, 1891- 1894. (b) Saito, S.; Hatanaka, K.; Yamamoto, H. *Tetrahedron* **2001**, *57*, ⁸⁷⁵-887.

^{(8) (}a) Tomioka, K. *Synthesis* **¹⁹⁹⁰**, 541-549. (b) Tomioka, K.; Nagaoka, Y. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 3, pp 1105-1120. (c) Tomioka, K. In *Modern Carbonyl Chemistry*; Otera, J., Ed.; Wiley-VCH: Veinheim, 2000; Chapter 12. (d) Iguchi, M.; Yamada, K.; Tomioka, K. In *Organolithiums in Enantioselective Synthesis*; Hodgson, D. M., Ed.; Springer-Verlag: Heidelberg, 2003; pp 37–59.

 $β$ -lactam products in high enantioselectivities. However, an acetate itself, in place of α -substituted esters, was not a reactive partner in the reaction, and PMP-imines were recovered mostly unchanged. After many trials, we finally reached a simple solution for this problematic reaction by using a lithium amide as an assisting agent.

We systematically studied the influence of the *para* substituents of the aniline-derived aldimines $3 (R^1 = Ph)$ on the reaction efficiency using menthyl acetate **1** (Scheme 1).

The lithium enolate **2** was generated by treatment of a THF solution of **1** with a slight excess of lithium diisopropylamide (LDA) at -78 °C for 1 h and was then treated with 3. Contrary to the lack of the addition product **4a** $(R^1 = Ph,$ $R^2 = 4$ -MeO) with PMP-imine **3a** ($R^1 = Ph$, $R^2 = 4$ -MeO) (Table 1, entry 1),¹⁰ imines $3b-3f$ of anilines bearing

electron-withdrawing substituents or no substituent at the 4-position were good partners for the Mannich-type reaction at -78 °C for 0.3 h (5 h for **3b**) to afford $4b-4f$ ($R^1 = Ph$) in good to high yields [62% (93:7 diastereomer ratio (dr)) with **3b** ($R^2 = 4$ -H), 87% (80:20 dr) with **3c** ($R^2 = 4$ -CF₃), 80% (72:28 dr) with **3d** ($R^2 = 4$ -CO₂*i*-Pr), 95% (60:40 dr) with **3e** ($R^2 = 4$ -CN), and 98% (56:44 dr) with **3f** ($R^2 =$ 4-NO₂) (entries $2-6$)].¹¹ As expected from Yamamoto's report,⁷ the reaction with **3g** ($R^2 = 2$ -MeO) proceeded under the same conditions to give **4g** in 86% yield and 84:16 dr (entry 7).

Hammett σ -constants and pK_a values of the 4-substituted anilines are likely to be the key to the success and failure of the Mannich reaction. For example, imines **3b**-**3f** derived from anilines bearing $4\text{-}NO_2$ (σ^{12} 0.81), $4\text{-}CN$ (0.71), $4\text{-}CO_2$ *i*-Pr (0.68 for $CO₂Et$), 4-CF₃ (0.53), and 4-H (0) groups are good reaction partners, and **3a** bearing 4 -MeO (-0.28) is not. The pK_a values¹³ of 4-NO₂ (21), 4-CN (26), and 4-H (31) anilines are smaller than or nearly equal to that (30 for MeCO2*t*-Bu) of an acetate. These apparently indicate two critical points: (1) electron-withdrawing groups $(R²)$ at the 4-position of aniline increase the reactivity of the imine functionality, and (2) the initially formed lithium amide species of **4** plays the important role in the reaction (Figure 1). When the lithium amides of the products **4** are more stable

Figure 1. Hammett σ -constant, yield (x) and dr (0) of the reaction.

as a result of the electron-withdrawing $4-R^2$ group or internal coordination (2-MeO), the efficiency of the reaction is higher and vice versa.

The diastereoselectivity is inversely proportional to the value of the Hammett σ -constants of \mathbb{R}^2 , implying the important role of the reactivity of the imine functionality (Figure 1). The reaction with more reactive imines likely proceeds through a looser organization of the transition state, leading to lower diastereoselectivity down to 56:44 dr with **3f** ($\mathbb{R}^2 = \text{NO}_2$). Less reactive imines react through a tighter transition state to afford better diastereoselectivity up to 93:7 dr with **3b** $(R^2 = H)$.

These experiments and analyses led us to the expectation that the least activated imine **3a** would provide the highest diastereoselectivity if the reaction proceeded. As a simple solution to the problem we applied the concept of ternary reagent control9 that enables activation of a lithium ester enolate by forming a complex with a lithium amide and a

⁽¹⁰⁾ The reaction at higher temperature resulted in the production of a messy mixture.

⁽¹¹⁾ The diastereomer ratio was determined by 1 H NMR (doublet Me protons appearing at around 1 ppm) of the crude product.

⁽¹²⁾ *March's Ad*V*anced Organic Chemistry: Reactions, Mechanisms, and Structure*, 5th ed.; Smith, M. B., March, J., Eds.; John Wiley & Sons Inc.: NY, 2001.

⁽¹³⁾ The pK_a values in DMSO quoted from the Bordwell pK_a table.

chiral ligand. For the reaction in THF, a binary complex of a lithium enolate with a lithium amide would be the reagent of choice.14

To our delight, the reaction at -30 °C for 4 h of a binary complex of menthyl acetate enolate (**2**-LDA), generated by treatment of **1** with 2.25 equiv of LDA in THF, converted PMP imine **3a** to the desired adduct **4a** ($R^1 = Ph$, $R^2 =$ 4-MeO) in 76% yield and 96:4 dr (Table 2, entry 1). The

Table 2. Mannich-Type Reaction of Imine **3** with **1** via Binary Reagent of **2**-LDA

LDA. 2.25 eq \longrightarrow 4.25 eq \rightarrow 2-LDA + 3	
THF, -78 °C, 1 h	-40 to -20 °C, 3-4 h

use of other lithium amides, derived from dicyclohexylamine, isopropylcyclohexylamine, or tetramethylpiperidine, had little influence on the reaction to afford **4a** with the same high selectivity of $94:6-93:7$ dr and $56-80\%$ yields. The binary reagent (**2**-LDA) also converted **3b** in 3.5 h to **4b** with 96:4 improved dr (entry 2). Under these conditions, no improvement in the diastereoselectivity was observed in the reaction with activated imines $3c-3f$.

The 4-substituents of benzaldehyde derivatives were not so influential on the reaction. The 4-trifluoromethyl- and 4-methoxybenzaldehyde imines **3h** and **3i** ($R^1 = 4 - CF_3C_6H_4$, 4-MeOC₆H₄, $R^2 = 4$ -MeO) were converted at -30 °C in the presence of an excess of LDA to **4h** in 74% yield and 97:3 dr and **4i** in 56% yield and 96:4 dr (entries 3 and 4). In the absence of an excess of LDA, the starting imines were recovered without formation of detectable amount of the adducts. Other than benzaldehyde imines, PMP imines of 1- and 2-naphthaldehydes $3j$ and $3k$ ($R¹ = 1$ - and 2-Naph) were converted at -40 °C for 3 h to 4j in 65% and 82:18 dr and **4k** in 83% and 94:6 dr (entries 5 and 6).

The deuterium oxide quench of the reaction with **3a** revealed that the α -position of ester $4a$ was deuterized at 80%, indicating the conversion of the initially formed lithium amide of the adduct to its dianion. The stability of the dianion of the adduct was confirmed by treatment of **4a** with 3 equiv of LDA to recover **4a** in 90% yield without any loss of diastereo-integrity (Scheme 2). On the other hand, treatment of **4a** with 1.2 equiv of LDA gave the recovery of **4a** in a trace amount, along with 4-methoxyaniline in 13% yield, *N*-PMP cinnamoylamide **5** in 28% yield, and its PMP-amine

1,4-adduct **6** in 12% yield. These products seemed to arise through elimination of 4-methoxyaniline from **4a** via its lithium enolate and subsequent 1,2-addition to a carbonyl group of cinnamate followed by $1,4$ -addition.¹⁵ Thus the stability of the lithium amide of **4a** is also one of the controlling factors of the reaction. It is important to note that LDA plays a dual role in the activation of the lithium enolate and the lithiation of the unstable initial adduct into the stable dianion.

The PMP group of $(-)$ -4a, diastereomerically enriched to over 99:1 dr in 70% yield by recrystallization from methanol, was easily removed by a CAN oxidation to afford optically pure (R) -7¹⁵ (Scheme 3).

In conclusion, we have developed a new and simple methodology for the Mannich-type reaction of a chiral acetate with arylaldimines, in which the use of a binary reagent composed of a lithium acetate enolate and a lithium amide is key to the success. It is also important to note that a simple chiral auxiliary, menthol, is operative as an efficient stoichiometric stereocontrolling group.

Acknowledgment. This research was partially supported by the 21st Century Center of Excellence Program "Knowledge Information Infrastructure for Genome Science" and a Grant-in-Aid for Scientific Research on Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules", from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a grant from JSPS.

Supporting Information Available: Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(14) (}a) Williard, P. G.; Hintze, M. J. *J. Am. Chem. Soc*. **1990**, *112*, OL049675N ⁸⁶⁰²-8604. **(**b) Galiano-Roth, A. S.; Kim, Y.-J.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 5053- 5055.

⁽¹⁵⁾ Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka, K. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 2886-2887.